"""NLP preprocessing and tokenization module.""" import re def normalize_text(text: str) -> str: """Normalize text for matching.""" text = text.lower().strip() text = re.sub(r'\s+', ' ', text) return text def tokenize(text: str) -> list[str]: """Tokenize text into words.""" text = normalize_text(text) tokens = re.findall(r'\b\w+\b', text) return tokens def extract_keywords(text: str) -> set[str]: """Extract important keywords from text.""" stopwords = { 'the', 'a', 'an', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should', 'may', 'might', 'must', 'shall', 'can', 'to', 'of', 'in', 'for', 'on', 'with', 'at', 'by', 'from', 'as', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'between', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 'just', 'and', 'but', 'if', 'or', 'because', 'until', 'while', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', 'whom', 'its', 'his', 'her', 'their', 'our', 'my', 'your', 'me', 'him', 'us', 'them', } tokens = tokenize(text) keywords = {t for t in tokens if t not in stopwords and len(t) > 1} return keywords def calculate_similarity(query1: str, query2: str) -> float: """Calculate similarity between two queries using Jaccard similarity.""" set1 = set(tokenize(query1)) set2 = set(tokenize(query2)) if not set1 or not set2: return 0.0 intersection = len(set1 & set2) union = len(set1 | set2) return intersection / union if union > 0 else 0.0