Files
shell-memory-cli/shell_memory/models.py
7000pctAUTO 25ab791314 Initial commit: Add shell-memory-cli project
A CLI tool that learns from terminal command patterns to automate repetitive workflows.

Features:
- Command recording with tags and descriptions
- Pattern detection for command sequences
- Session recording and replay
- Natural language script generation
2026-01-30 11:56:14 +00:00

126 lines
3.9 KiB
Python

"""Data models for Shell Memory CLI."""
from dataclasses import dataclass, field
from datetime import datetime
from typing import List, Optional
import hashlib
@dataclass
class Command:
"""Represents a recorded terminal command."""
id: Optional[int] = None
command: str = ""
description: str = ""
tags: List[str] = field(default_factory=list)
created_at: datetime = field(default_factory=datetime.now)
usage_count: int = 0
def to_dict(self) -> dict:
return {
"id": self.id,
"command": self.command,
"description": self.description,
"tags": self.tags,
"created_at": self.created_at.isoformat(),
"usage_count": self.usage_count,
}
@classmethod
def from_dict(cls, data: dict) -> "Command":
return cls(
id=data.get("id"),
command=data.get("command", ""),
description=data.get("description", ""),
tags=data.get("tags", []),
created_at=datetime.fromisoformat(data["created_at"]) if "created_at" in data else datetime.now(),
usage_count=data.get("usage_count", 0),
)
@dataclass
class Pattern:
"""Represents a detected command pattern."""
id: Optional[int] = None
name: str = ""
command_ids: List[int] = field(default_factory=list)
frequency: int = 0
last_seen: datetime = field(default_factory=datetime.now)
def sequence_hash(self) -> str:
hash_input = ",".join(map(str, self.command_ids))
return hashlib.md5(hash_input.encode()).hexdigest()
def to_dict(self) -> dict:
return {
"id": self.id,
"name": self.name,
"command_ids": self.command_ids,
"frequency": self.frequency,
"last_seen": self.last_seen.isoformat(),
}
@classmethod
def from_dict(cls, data: dict) -> "Pattern":
return cls(
id=data.get("id"),
name=data.get("name", ""),
command_ids=data.get("command_ids", []),
frequency=data.get("frequency", 0),
last_seen=datetime.fromisoformat(data["last_seen"]) if "last_seen" in data else datetime.now(),
)
@dataclass
class Session:
"""Represents a recorded terminal session."""
id: Optional[int] = None
name: str = ""
commands: List[dict] = field(default_factory=list)
start_time: datetime = field(default_factory=datetime.now)
end_time: Optional[datetime] = None
def to_dict(self) -> dict:
return {
"id": self.id,
"name": self.name,
"commands": self.commands,
"start_time": self.start_time.isoformat(),
"end_time": self.end_time.isoformat() if self.end_time else None,
}
@classmethod
def from_dict(cls, data: dict) -> "Session":
return cls(
id=data.get("id"),
name=data.get("name", ""),
commands=data.get("commands", []),
start_time=datetime.fromisoformat(data["start_time"]) if "start_time" in data else datetime.now(),
end_time=datetime.fromisoformat(data["end_time"]) if data.get("end_time") else None,
)
@dataclass
class ScriptTemplate:
"""Represents a script template for natural language generation."""
id: Optional[int] = None
keywords: List[str] = field(default_factory=list)
template: str = ""
description: str = ""
def to_dict(self) -> dict:
return {
"id": self.id,
"keywords": self.keywords,
"template": self.template,
"description": self.description,
}
@classmethod
def from_dict(cls, data: dict) -> "ScriptTemplate":
return cls(
id=data.get("id"),
keywords=data.get("keywords", []),
template=data.get("template", ""),
description=data.get("description", ""),
)